Cargando…
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
The rapid growth in data makes the quest for highly scalable learners a popular one. To achieve the trade-off between structure complexity and classification accuracy, the k-dependence Bayesian classifier (KDB) allows to represent different number of interdependencies for different data sizes. In th...
Autores principales: | Liu, Yang, Wang, Limin, Sun, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512482/ https://www.ncbi.nlm.nih.gov/pubmed/33266621 http://dx.doi.org/10.3390/e20120897 |
Ejemplares similares
-
Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance
por: Wang, Limin, et al.
Publicado: (2019) -
Structure Learning of Bayesian Network Based on Adaptive Thresholding
por: Zhang, Yang, et al.
Publicado: (2019) -
Stochastic margin-based structure learning of Bayesian network classifiers
por: Pernkopf, Franz, et al.
Publicado: (2013) -
EHHR: an efficient evolutionary hyper-heuristic based recommender framework for short-text classifier selection
por: Almas, Bushra, et al.
Publicado: (2022) -
Heuristics as Bayesian inference under extreme priors
por: Parpart, Paula, et al.
Publicado: (2018)