Cargando…
Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors
Problems in statistical auditing are usually one–sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given materiality fixed by the auditor, so that the accounting statement can be accepted or rejected....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512506/ https://www.ncbi.nlm.nih.gov/pubmed/33266643 http://dx.doi.org/10.3390/e20120919 |
_version_ | 1783586174032412672 |
---|---|
author | Martel-Escobar, María Vázquez-Polo, Francisco-José Hernández-Bastida, Agustín |
author_facet | Martel-Escobar, María Vázquez-Polo, Francisco-José Hernández-Bastida, Agustín |
author_sort | Martel-Escobar, María |
collection | PubMed |
description | Problems in statistical auditing are usually one–sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given materiality fixed by the auditor, so that the accounting statement can be accepted or rejected. Dollar unit sampling (DUS) is a useful procedure to collect sample information, whereby items are chosen with a probability proportional to book amounts and in which the relevant error amount distribution is the distribution of the taints weighted by the book value. The likelihood induced by DUS refers to a 201–variate parameter [Formula: see text] but the prior information is in a subparameter [Formula: see text] linear function of [Formula: see text] , representing the total amount of error. This means that partial prior information must be processed. In this paper, two main proposals are made: (1) to modify the likelihood, to make it compatible with prior information and thus obtain a Bayesian analysis for hypotheses to be tested; (2) to use a maximum entropy prior to incorporate limited auditor information. To achieve these goals, we obtain a modified likelihood function inspired by the induced likelihood described by Zehna (1966) and then adapt the Bayes’ theorem to this likelihood in order to derive a posterior distribution for [Formula: see text]. This approach shows that the DUS methodology can be justified as a natural method of processing partial prior information in auditing and that a Bayesian analysis can be performed even when prior information is only available for a subparameter of the model. Finally, some numerical examples are presented. |
format | Online Article Text |
id | pubmed-7512506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75125062020-11-09 Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors Martel-Escobar, María Vázquez-Polo, Francisco-José Hernández-Bastida, Agustín Entropy (Basel) Article Problems in statistical auditing are usually one–sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given materiality fixed by the auditor, so that the accounting statement can be accepted or rejected. Dollar unit sampling (DUS) is a useful procedure to collect sample information, whereby items are chosen with a probability proportional to book amounts and in which the relevant error amount distribution is the distribution of the taints weighted by the book value. The likelihood induced by DUS refers to a 201–variate parameter [Formula: see text] but the prior information is in a subparameter [Formula: see text] linear function of [Formula: see text] , representing the total amount of error. This means that partial prior information must be processed. In this paper, two main proposals are made: (1) to modify the likelihood, to make it compatible with prior information and thus obtain a Bayesian analysis for hypotheses to be tested; (2) to use a maximum entropy prior to incorporate limited auditor information. To achieve these goals, we obtain a modified likelihood function inspired by the induced likelihood described by Zehna (1966) and then adapt the Bayes’ theorem to this likelihood in order to derive a posterior distribution for [Formula: see text]. This approach shows that the DUS methodology can be justified as a natural method of processing partial prior information in auditing and that a Bayesian analysis can be performed even when prior information is only available for a subparameter of the model. Finally, some numerical examples are presented. MDPI 2018-12-01 /pmc/articles/PMC7512506/ /pubmed/33266643 http://dx.doi.org/10.3390/e20120919 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Martel-Escobar, María Vázquez-Polo, Francisco-José Hernández-Bastida, Agustín Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title | Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title_full | Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title_fullStr | Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title_full_unstemmed | Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title_short | Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors |
title_sort | bayesian inference in auditing with partial prior information using maximum entropy priors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512506/ https://www.ncbi.nlm.nih.gov/pubmed/33266643 http://dx.doi.org/10.3390/e20120919 |
work_keys_str_mv | AT martelescobarmaria bayesianinferenceinauditingwithpartialpriorinformationusingmaximumentropypriors AT vazquezpolofranciscojose bayesianinferenceinauditingwithpartialpriorinformationusingmaximumentropypriors AT hernandezbastidaagustin bayesianinferenceinauditingwithpartialpriorinformationusingmaximumentropypriors |