Cargando…
Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis
The characteristics of the early fault signal of the rolling bearing are weak and this leads to difficulties in feature extraction. In order to diagnose and identify the fault feature from the bearing vibration signal, an adaptive local iterative filter decomposition method based on permutation entr...
Autores principales: | Lv, Yong, Zhang, Yi, Yi, Cancan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512508/ https://www.ncbi.nlm.nih.gov/pubmed/33266644 http://dx.doi.org/10.3390/e20120920 |
Ejemplares similares
-
A Rolling Bearing Fault Classification Scheme Based on k-Optimized Adaptive Local Iterative Filtering and Improved Multiscale Permutation Entropy
por: Zhang, Yi, et al.
Publicado: (2021) -
Rolling Element Bearing Fault Diagnosis by Combining Adaptive Local Iterative Filtering, Modified Fuzzy Entropy and Support Vector Machine
por: Zhu, Keheng, et al.
Publicado: (2018) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy
por: Ge, Mao, et al.
Publicado: (2019) -
Fault Recognition of Rolling Bearings Based on Parameter Optimized Multi-Scale Permutation Entropy and Gath-Geva
por: Wang, Haiming, et al.
Publicado: (2021)