Cargando…
Rolling Element Bearing Fault Diagnosis by Combining Adaptive Local Iterative Filtering, Modified Fuzzy Entropy and Support Vector Machine
A new fault feature extraction method for rolling element bearing is put forward in this paper based on the adaptive local iterative filtering (ALIF) algorithm and the modified fuzzy entropy. Due to the bearing vibration signals’ non-stationary and nonlinear characteristics, the ALIF method, which i...
Autores principales: | Zhu, Keheng, Chen, Liang, Hu, Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512513/ https://www.ncbi.nlm.nih.gov/pubmed/33266650 http://dx.doi.org/10.3390/e20120926 |
Ejemplares similares
-
Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis
por: Lv, Yong, et al.
Publicado: (2018) -
Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
por: Zhu, Xiaolong, et al.
Publicado: (2018) -
Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy
por: Yan, Xiaoan, et al.
Publicado: (2021) -
A Rolling Bearing Fault Classification Scheme Based on k-Optimized Adaptive Local Iterative Filtering and Improved Multiscale Permutation Entropy
por: Zhang, Yi, et al.
Publicado: (2021) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023)