Cargando…
Anomaly Detection in Paleoclimate Records Using Permutation Entropy
Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512518/ https://www.ncbi.nlm.nih.gov/pubmed/33266655 http://dx.doi.org/10.3390/e20120931 |
_version_ | 1783586176843644928 |
---|---|
author | Garland, Joshua Jones, Tyler R. Neuder, Michael Morris, Valerie White, James W. C. Bradley, Elizabeth |
author_facet | Garland, Joshua Jones, Tyler R. Neuder, Michael Morris, Valerie White, James W. C. Bradley, Elizabeth |
author_sort | Garland, Joshua |
collection | PubMed |
description | Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis—and can even be useful for guiding that analysis. |
format | Online Article Text |
id | pubmed-7512518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75125182020-11-09 Anomaly Detection in Paleoclimate Records Using Permutation Entropy Garland, Joshua Jones, Tyler R. Neuder, Michael Morris, Valerie White, James W. C. Bradley, Elizabeth Entropy (Basel) Article Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis—and can even be useful for guiding that analysis. MDPI 2018-12-05 /pmc/articles/PMC7512518/ /pubmed/33266655 http://dx.doi.org/10.3390/e20120931 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Garland, Joshua Jones, Tyler R. Neuder, Michael Morris, Valerie White, James W. C. Bradley, Elizabeth Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title | Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title_full | Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title_fullStr | Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title_full_unstemmed | Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title_short | Anomaly Detection in Paleoclimate Records Using Permutation Entropy |
title_sort | anomaly detection in paleoclimate records using permutation entropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512518/ https://www.ncbi.nlm.nih.gov/pubmed/33266655 http://dx.doi.org/10.3390/e20120931 |
work_keys_str_mv | AT garlandjoshua anomalydetectioninpaleoclimaterecordsusingpermutationentropy AT jonestylerr anomalydetectioninpaleoclimaterecordsusingpermutationentropy AT neudermichael anomalydetectioninpaleoclimaterecordsusingpermutationentropy AT morrisvalerie anomalydetectioninpaleoclimaterecordsusingpermutationentropy AT whitejameswc anomalydetectioninpaleoclimaterecordsusingpermutationentropy AT bradleyelizabeth anomalydetectioninpaleoclimaterecordsusingpermutationentropy |