Cargando…
Rotor Fault Diagnosis Based on Characteristic Frequency Band Energy Entropy and Support Vector Machine
Rotor is a widely used and easily defected mechanical component. Thus, it is significant to develop effective techniques for rotor fault diagnosis. Fault signature extraction and state classification of the extracted signatures are two key steps for diagnosing rotor faults. To complete the accurate...
Autores principales: | Pang, Bin, Tang, Guiji, Zhou, Chong, Tian, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512519/ https://www.ncbi.nlm.nih.gov/pubmed/33266656 http://dx.doi.org/10.3390/e20120932 |
Ejemplares similares
-
Gearbox Fault Diagnosis Based on Hierarchical Instantaneous Energy Density Dispersion Entropy and Dynamic Time Warping
por: Tang, Guiji, et al.
Publicado: (2019) -
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
por: Pang, Bin, et al.
Publicado: (2018) -
Rolling Bearing Fault Diagnosis Based on Optimal Notch Filter and Enhanced Singular Value Decomposition
por: Pang, Bin, et al.
Publicado: (2018) -
Approximate entropy and support vector machines for electroencephalogram signal classification
por: Zhang, Zhen, et al.
Publicado: (2013) -
Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
por: Zhu, Xiaolong, et al.
Publicado: (2018)