Cargando…

Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate

In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yuefeng, Hooker, Giles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512539/
https://www.ncbi.nlm.nih.gov/pubmed/33266679
http://dx.doi.org/10.3390/e20120955
_version_ 1783586181830672384
author Wu, Yuefeng
Hooker, Giles
author_facet Wu, Yuefeng
Hooker, Giles
author_sort Wu, Yuefeng
collection PubMed
description In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density using a random histogram prior; the other transforms the posterior over densities into a posterior over parameters through minimizing the Hellinger distance for each density. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator, indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold.
format Online
Article
Text
id pubmed-7512539
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75125392020-11-09 Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate Wu, Yuefeng Hooker, Giles Entropy (Basel) Article In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density using a random histogram prior; the other transforms the posterior over densities into a posterior over parameters through minimizing the Hellinger distance for each density. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator, indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold. MDPI 2018-12-11 /pmc/articles/PMC7512539/ /pubmed/33266679 http://dx.doi.org/10.3390/e20120955 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wu, Yuefeng
Hooker, Giles
Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title_full Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title_fullStr Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title_full_unstemmed Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title_short Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
title_sort asymptotic properties for methods combining the minimum hellinger distance estimate and the bayesian nonparametric density estimate
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512539/
https://www.ncbi.nlm.nih.gov/pubmed/33266679
http://dx.doi.org/10.3390/e20120955
work_keys_str_mv AT wuyuefeng asymptoticpropertiesformethodscombiningtheminimumhellingerdistanceestimateandthebayesiannonparametricdensityestimate
AT hookergiles asymptoticpropertiesformethodscombiningtheminimumhellingerdistanceestimateandthebayesiannonparametricdensityestimate