Cargando…
Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend thes...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512539/ https://www.ncbi.nlm.nih.gov/pubmed/33266679 http://dx.doi.org/10.3390/e20120955 |
_version_ | 1783586181830672384 |
---|---|
author | Wu, Yuefeng Hooker, Giles |
author_facet | Wu, Yuefeng Hooker, Giles |
author_sort | Wu, Yuefeng |
collection | PubMed |
description | In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density using a random histogram prior; the other transforms the posterior over densities into a posterior over parameters through minimizing the Hellinger distance for each density. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator, indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold. |
format | Online Article Text |
id | pubmed-7512539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75125392020-11-09 Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate Wu, Yuefeng Hooker, Giles Entropy (Basel) Article In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density using a random histogram prior; the other transforms the posterior over densities into a posterior over parameters through minimizing the Hellinger distance for each density. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator, indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold. MDPI 2018-12-11 /pmc/articles/PMC7512539/ /pubmed/33266679 http://dx.doi.org/10.3390/e20120955 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Yuefeng Hooker, Giles Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title | Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title_full | Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title_fullStr | Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title_full_unstemmed | Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title_short | Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate |
title_sort | asymptotic properties for methods combining the minimum hellinger distance estimate and the bayesian nonparametric density estimate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512539/ https://www.ncbi.nlm.nih.gov/pubmed/33266679 http://dx.doi.org/10.3390/e20120955 |
work_keys_str_mv | AT wuyuefeng asymptoticpropertiesformethodscombiningtheminimumhellingerdistanceestimateandthebayesiannonparametricdensityestimate AT hookergiles asymptoticpropertiesformethodscombiningtheminimumhellingerdistanceestimateandthebayesiannonparametricdensityestimate |