Cargando…
Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficient when the parametric family contains the data-generating distribution. This paper seeks to extend thes...
Autores principales: | Wu, Yuefeng, Hooker, Giles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512539/ https://www.ncbi.nlm.nih.gov/pubmed/33266679 http://dx.doi.org/10.3390/e20120955 |
Ejemplares similares
-
Rare Event Analysis for Minimum Hellinger Distance Estimators via Large Deviation Theory
por: Vidyashankar, Anand N., et al.
Publicado: (2021) -
Empirical Squared Hellinger Distance Estimator and Generalizations to a Family of α-Divergence Estimators
por: Ding, Rui, et al.
Publicado: (2023) -
Asymptotically efficient estimates for nonparametric regression models
por: Galtchouk, L, et al.
Publicado: (2004) -
The asymptotic normality of internal estimator for nonparametric regression
por: Li, Penghua, et al.
Publicado: (2018) -
Hellinger Information Matrix and Hellinger Priors
por: Shemyakin, Arkady
Publicado: (2023)