Cargando…
Characterization of Self-Assembled 2D Patterns with Voronoi Entropy
The Voronoi entropy is a mathematical tool for quantitative characterization of the orderliness of points distributed on a surface. The tool is useful to study various surface self-assembly processes. We provide the historical background, from Kepler and Descartes to our days, and discuss topologica...
Autores principales: | Bormashenko, Edward, Frenkel, Mark, Vilk, Alla, Legchenkova, Irina, Fedorets, Alexander A., Aktaev, Nurken E., Dombrovsky, Leonid A., Nosonovsky, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512542/ https://www.ncbi.nlm.nih.gov/pubmed/33266680 http://dx.doi.org/10.3390/e20120956 |
Ejemplares similares
-
Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings
por: Bormashenko, Edward, et al.
Publicado: (2023) -
Is the Voronoi Entropy a True Entropy? Comments on “Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem”, Entropy 2017, 19, 48
por: Bormashenko, Edward, et al.
Publicado: (2019) -
Self-assembled levitating clusters of water droplets: pattern-formation and stability
por: Fedorets, Alexander A., et al.
Publicado: (2017) -
Symmetry and Shannon Measure of Ordering: Paradoxes of Voronoi Tessellation
por: Bormashenko, Edward, et al.
Publicado: (2019) -
Mini-Generator of Electrical Power Exploiting the
Marangoni Flow Inspired Self-Propulsion
por: Frenkel, Mark, et al.
Publicado: (2019)