Cargando…
Semi-Supervised Minimum Error Entropy Principle with Distributed Method
The minimum error entropy principle (MEE) is an alternative of the classical least squares for its robustness to non-Gaussian noise. This paper studies the gradient descent algorithm for MEE with a semi-supervised approach and distributed method, and shows that using the additional information of un...
Autores principales: | Wang, Baobin, Hu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512566/ https://www.ncbi.nlm.nih.gov/pubmed/33266692 http://dx.doi.org/10.3390/e20120968 |
Ejemplares similares
-
Minimum Error Entropy Classification
por: Marques de Sá, Joaquim P, et al.
Publicado: (2013) -
Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Quantum Discord, Thermal Discord, and Entropy Generation in the Minimum Error Discrimination Strategy
por: Jiménez, Omar, et al.
Publicado: (2019) -
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy
por: Schmarje, Lars, et al.
Publicado: (2021) -
Calibration of Linear Time-Varying Frequency Errors for Distributed ISAR Imaging Based on the Entropy Minimization Principle
por: Kang, Hailong, et al.
Publicado: (2019)