Cargando…

Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain

In this paper, a hierarchical prior model based on the Haar transformation and an appropriate Bayesian computational method for X-ray CT reconstruction are presented. Given the piece-wise continuous property of the object, a multilevel Haar transformation is used to associate a sparse representation...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li, Mohammad-Djafari, Ali, Gac, Nicolas, Dumitru, Mircea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512575/
https://www.ncbi.nlm.nih.gov/pubmed/33266700
http://dx.doi.org/10.3390/e20120977
Descripción
Sumario:In this paper, a hierarchical prior model based on the Haar transformation and an appropriate Bayesian computational method for X-ray CT reconstruction are presented. Given the piece-wise continuous property of the object, a multilevel Haar transformation is used to associate a sparse representation for the object. The sparse structure is enforced via a generalized Student-t distribution ([Formula: see text]), expressed as the marginal of a normal-inverse Gamma distribution. The proposed model and corresponding algorithm are designed to adapt to specific 3D data sizes and to be used in both medical and industrial Non-Destructive Testing (NDT) applications. In the proposed Bayesian method, a hierarchical structured prior model is proposed, and the parameters are iteratively estimated. The initialization of the iterative algorithm uses the parameters of the prior distributions. A novel strategy for the initialization is presented and proven experimentally. We compare the proposed method with two state-of-the-art approaches, showing that our method has better reconstruction performance when fewer projections are considered and when projections are acquired from limited angles.