Cargando…
Auditory Inspired Convolutional Neural Networks for Ship Type Classification with Raw Hydrophone Data
Detecting and classifying ships based on radiated noise provide practical guidelines for the reduction of underwater noise footprint of shipping. In this paper, the detection and classification are implemented by auditory inspired convolutional neural networks trained from raw underwater acoustic si...
Autores principales: | Shen, Sheng, Yang, Honghui, Li, Junhao, Xu, Guanghui, Sheng, Meiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512589/ https://www.ncbi.nlm.nih.gov/pubmed/33266713 http://dx.doi.org/10.3390/e20120990 |
Ejemplares similares
-
Ship Type Classification by Convolutional Neural Networks with Auditory-Like Mechanisms
por: Shen, Sheng, et al.
Publicado: (2020) -
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2019) -
Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
por: Yao, Xiaohui, et al.
Publicado: (2023) -
Application of Convolutional Neural Network (CNN) to Recognize Ship Structures
por: Lim, Jae-Jun, et al.
Publicado: (2022) -
Design and implementation of a jellyfish otolith-inspired MEMS vector hydrophone for low-frequency detection
por: Wang, Renxin, et al.
Publicado: (2021)