Cargando…

Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems

Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenva...

Descripción completa

Detalles Bibliográficos
Autor principal: Fidaleo, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512590/
https://www.ncbi.nlm.nih.gov/pubmed/33266710
http://dx.doi.org/10.3390/e20120987
_version_ 1783586193239179264
author Fidaleo, Francesco
author_facet Fidaleo, Francesco
author_sort Fidaleo, Francesco
collection PubMed
description Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous” eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory, which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent ergodic theorem of Krylov and Bogolioubov.
format Online
Article
Text
id pubmed-7512590
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75125902020-11-09 Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems Fidaleo, Francesco Entropy (Basel) Article Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous” eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory, which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent ergodic theorem of Krylov and Bogolioubov. MDPI 2018-12-19 /pmc/articles/PMC7512590/ /pubmed/33266710 http://dx.doi.org/10.3390/e20120987 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fidaleo, Francesco
Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title_full Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title_fullStr Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title_full_unstemmed Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title_short Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
title_sort uniform convergence of cesaro averages for uniquely ergodic c(*)-dynamical systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512590/
https://www.ncbi.nlm.nih.gov/pubmed/33266710
http://dx.doi.org/10.3390/e20120987
work_keys_str_mv AT fidaleofrancesco uniformconvergenceofcesaroaveragesforuniquelyergodiccdynamicalsystems