Cargando…
Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenva...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512590/ https://www.ncbi.nlm.nih.gov/pubmed/33266710 http://dx.doi.org/10.3390/e20120987 |
_version_ | 1783586193239179264 |
---|---|
author | Fidaleo, Francesco |
author_facet | Fidaleo, Francesco |
author_sort | Fidaleo, Francesco |
collection | PubMed |
description | Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous” eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory, which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent ergodic theorem of Krylov and Bogolioubov. |
format | Online Article Text |
id | pubmed-7512590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75125902020-11-09 Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems Fidaleo, Francesco Entropy (Basel) Article Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous” eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory, which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent ergodic theorem of Krylov and Bogolioubov. MDPI 2018-12-19 /pmc/articles/PMC7512590/ /pubmed/33266710 http://dx.doi.org/10.3390/e20120987 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fidaleo, Francesco Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title | Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title_full | Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title_fullStr | Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title_full_unstemmed | Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title_short | Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems |
title_sort | uniform convergence of cesaro averages for uniquely ergodic c(*)-dynamical systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512590/ https://www.ncbi.nlm.nih.gov/pubmed/33266710 http://dx.doi.org/10.3390/e20120987 |
work_keys_str_mv | AT fidaleofrancesco uniformconvergenceofcesaroaveragesforuniquelyergodiccdynamicalsystems |