Cargando…
Uniform Convergence of Cesaro Averages for Uniquely Ergodic C(*)-Dynamical Systems
Consider a uniquely ergodic [Formula: see text]-dynamical system based on a unital *-endomorphism [Formula: see text] of a [Formula: see text]-algebra. We prove the uniform convergence of Cesaro averages [Formula: see text] for all values [Formula: see text] in the unit circle, which are not eigenva...
Autor principal: | Fidaleo, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512590/ https://www.ncbi.nlm.nih.gov/pubmed/33266710 http://dx.doi.org/10.3390/e20120987 |
Ejemplares similares
-
On the convergence of the inverse diffraction transform kernel using Cesàro summability
por: Pallotta, M
Publicado: (1994) -
Learning Ergodic Averages in Chaotic Systems
por: Huhn, Francisco, et al.
Publicado: (2020) -
Evanescent wave in multiple slit diffraction and n-array antennas in metamaterial using Cesàro convergence
por: Nellambakam, Yuganand, et al.
Publicado: (2023) -
On the connection between Cesàro and Abel summabilities
por: Pallotta, M
Publicado: (1995) -
Ergodic theory and dynamical systems
por: Coudène, Yves
Publicado: (2016)