Cargando…
Sequential Change-Point Detection via Online Convex Optimization
Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators co...
Autores principales: | Cao, Yang, Xie, Liyan, Xie, Yao, Xu, Huan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512601/ https://www.ncbi.nlm.nih.gov/pubmed/33265199 http://dx.doi.org/10.3390/e20020108 |
Ejemplares similares
-
Exposed points of convex sets and weak sequential convergence
por: Granirer, Edmond E
Publicado: (1972) -
Global optimization with non-convex constraints: sequential and parallel algorithms
por: Strongin, Roman G, et al.
Publicado: (2000) -
Statistical inference via convex optimization
por: Juditsky, Anatoli, et al.
Publicado: (2020) -
Convex optimization
por: Ruud, Arto
Publicado: (2019) -
A mathematical view of interior-point methods in convex optimization /
por: Renegar, James, 1955-
Publicado: (2001)