Cargando…
A Simple and Adaptive Dispersion Regression Model for Count Data
Regression for count data is widely performed by models such as Poisson, negative binomial (NB) and zero-inflated regression. A challenge often faced by practitioners is the selection of the right model to take into account dispersion, which typically occurs in count datasets. It is highly desirable...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512637/ https://www.ncbi.nlm.nih.gov/pubmed/33265233 http://dx.doi.org/10.3390/e20020142 |
Sumario: | Regression for count data is widely performed by models such as Poisson, negative binomial (NB) and zero-inflated regression. A challenge often faced by practitioners is the selection of the right model to take into account dispersion, which typically occurs in count datasets. It is highly desirable to have a unified model that can automatically adapt to the underlying dispersion and that can be easily implemented in practice. In this paper, a discrete Weibull regression model is shown to be able to adapt in a simple way to different types of dispersions relative to Poisson regression: overdispersion, underdispersion and covariate-specific dispersion. Maximum likelihood can be used for efficient parameter estimation. The description of the model, parameter inference and model diagnostics is accompanied by simulated and real data analyses. |
---|