Cargando…

Information Theoretic-Based Interpretation of a Deep Neural Network Approach in Diagnosing Psychogenic Non-Epileptic Seizures

The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a c...

Descripción completa

Detalles Bibliográficos
Autores principales: Gasparini, Sara, Campolo, Maurizio, Ieracitano, Cosimo, Mammone, Nadia, Ferlazzo, Edoardo, Sueri, Chiara, Tripodi, Giovanbattista Gaspare, Aguglia, Umberto, Morabito, Francesco Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512641/
https://www.ncbi.nlm.nih.gov/pubmed/33265170
http://dx.doi.org/10.3390/e20020043
Descripción
Sumario:The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.