Cargando…
Information Theoretic-Based Interpretation of a Deep Neural Network Approach in Diagnosing Psychogenic Non-Epileptic Seizures
The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a c...
Autores principales: | Gasparini, Sara, Campolo, Maurizio, Ieracitano, Cosimo, Mammone, Nadia, Ferlazzo, Edoardo, Sueri, Chiara, Tripodi, Giovanbattista Gaspare, Aguglia, Umberto, Morabito, Francesco Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512641/ https://www.ncbi.nlm.nih.gov/pubmed/33265170 http://dx.doi.org/10.3390/e20020043 |
Ejemplares similares
-
Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures
por: Lo Giudice, Michele, et al.
Publicado: (2022) -
Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects
por: Lo Giudice, Michele, et al.
Publicado: (2022) -
A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls
por: Varone, Giuseppe, et al.
Publicado: (2021) -
A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects
por: Varone, Giuseppe, et al.
Publicado: (2020) -
Latency of epileptic and psychogenic nonepileptic seizures
por: Ozkan, Hulya, et al.
Publicado: (2023)