Cargando…

Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations

We study the equivalence between the entanglement-based scheme and prepare-and-measure scheme of unidimensional (UD) continuous-variable quantum key distribution protocol. Based on this equivalence, the physicality and security of the UD coherent-state protocols in the ideal detection and realistic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Pu, Wang, Xuyang, Li, Yongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512673/
https://www.ncbi.nlm.nih.gov/pubmed/33265248
http://dx.doi.org/10.3390/e20030157
_version_ 1783586212347379712
author Wang, Pu
Wang, Xuyang
Li, Yongmin
author_facet Wang, Pu
Wang, Xuyang
Li, Yongmin
author_sort Wang, Pu
collection PubMed
description We study the equivalence between the entanglement-based scheme and prepare-and-measure scheme of unidimensional (UD) continuous-variable quantum key distribution protocol. Based on this equivalence, the physicality and security of the UD coherent-state protocols in the ideal detection and realistic detection conditions are investigated using the Heisenberg uncertainty relation, respectively. We also present a method to increase both the secret key rates and maximal transmission distances of the UD coherent-state protocol by adding an optimal noise to the reconciliation side. It is expected that our analysis will aid in the practical applications of the UD protocol.
format Online
Article
Text
id pubmed-7512673
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75126732020-11-09 Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations Wang, Pu Wang, Xuyang Li, Yongmin Entropy (Basel) Article We study the equivalence between the entanglement-based scheme and prepare-and-measure scheme of unidimensional (UD) continuous-variable quantum key distribution protocol. Based on this equivalence, the physicality and security of the UD coherent-state protocols in the ideal detection and realistic detection conditions are investigated using the Heisenberg uncertainty relation, respectively. We also present a method to increase both the secret key rates and maximal transmission distances of the UD coherent-state protocol by adding an optimal noise to the reconciliation side. It is expected that our analysis will aid in the practical applications of the UD protocol. MDPI 2018-03-01 /pmc/articles/PMC7512673/ /pubmed/33265248 http://dx.doi.org/10.3390/e20030157 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Pu
Wang, Xuyang
Li, Yongmin
Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title_full Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title_fullStr Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title_full_unstemmed Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title_short Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
title_sort security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512673/
https://www.ncbi.nlm.nih.gov/pubmed/33265248
http://dx.doi.org/10.3390/e20030157
work_keys_str_mv AT wangpu securityanalysisofunidimensionalcontinuousvariablequantumkeydistributionusinguncertaintyrelations
AT wangxuyang securityanalysisofunidimensionalcontinuousvariablequantumkeydistributionusinguncertaintyrelations
AT liyongmin securityanalysisofunidimensionalcontinuousvariablequantumkeydistributionusinguncertaintyrelations