Cargando…
Gudder’s Theorem and the Born Rule
We derive the Born probability rule from Gudder’s theorem—a theorem that addresses orthogonally-additive functions. These functions are shown to be tightly connected to the functions that enter the definition of a signed measure. By imposing some additional requirements besides orthogonal additivity...
Autor principal: | De Zela, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512674/ https://www.ncbi.nlm.nih.gov/pubmed/33265249 http://dx.doi.org/10.3390/e20030158 |
Ejemplares similares
-
Revisiting Born’s Rule through Uhlhorn’s and Gleason’s Theorems
por: Auffèves, Alexia, et al.
Publicado: (2022) -
Beyond Bell’s theorem: realism and locality without Bell-type correlations
por: De Zela, F.
Publicado: (2017) -
Roth's theorem for ruled surfaces
por: Gasbarri, C, et al.
Publicado: (1999) -
A generalisation of a theorem of Nagata on ruled surfaces
por: Holla, Y I, et al.
Publicado: (2000) -
Nutrigonometry IV: Thales’ theorem to measure the rules of dietary compromise in animals
por: Morimoto, Juliano
Publicado: (2023)