Cargando…
Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise
In this part of the paper, the theory of nonlinear dynamics of flexible Euler–Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for furthe...
Autores principales: | Awrejcewicz, Jan, Krysko, Anton V., Erofeev, Nikolay P., Dobriyan, Vitalyi, Barulina, Marina A., Krysko, Vadim A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512686/ https://www.ncbi.nlm.nih.gov/pubmed/33265261 http://dx.doi.org/10.3390/e20030170 |
Ejemplares similares
-
Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems
por: Awrejcewicz, Jan, et al.
Publicado: (2018) -
Chaos in Structural Mechanics
por: Awrejcewicz, Jan, et al.
Publicado: (2008) -
A New Mathematical Model of Functionally Graded Porous Euler–Bernoulli Nanoscaled Beams Taking into Account Some Types of Nonlinearities
por: Krysko, A. V., et al.
Publicado: (2022) -
Zeros of Bernoulli, generalized Bernoulli, and Euler polynomials
por: Dilcher, Karl
Publicado: (1988) -
Dynamics of Space-Fractional Euler–Bernoulli and Timoshenko Beams
por: Stempin, Paulina, et al.
Publicado: (2021)