Cargando…
Correntropy Based Matrix Completion
This paper studies the matrix completion problems when the entries are contaminated by non-Gaussian noise or outliers. The proposed approach employs a nonconvex loss function induced by the maximum correntropy criterion. With the help of this loss function, we develop a rank constrained, as well as...
Autores principales: | Yang, Yuning, Feng, Yunlong, Suykens, Johan A. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512687/ https://www.ncbi.nlm.nih.gov/pubmed/33265262 http://dx.doi.org/10.3390/e20030171 |
Ejemplares similares
-
Non-negative matrix factorization by maximizing correntropy for cancer clustering
por: Wang, Jim Jing-Yan, et al.
Publicado: (2013) -
Robust large-scale clustering based on correntropy
por: Jin, Guodong, et al.
Publicado: (2022) -
Correntropy Based Divided Difference Filtering for the Positioning of Ships
por: Liu, Xi, et al.
Publicado: (2018) -
Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
por: Huang, Hongliang, et al.
Publicado: (2022) -
Adaptive Maximum Correntropy Gaussian Filter Based on Variational Bayes
por: Wang, Guoqing, et al.
Publicado: (2018)