Cargando…

Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding

Rate-distortion optimization (RDO) plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC). Among all the possible coding modes, it aims to select the one which has the best trade-off b...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ying, Liu, Guizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512699/
https://www.ncbi.nlm.nih.gov/pubmed/33265272
http://dx.doi.org/10.3390/e20030181
Descripción
Sumario:Rate-distortion optimization (RDO) plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC). Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF) technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.