Cargando…

Fisher Information Based Meteorological Factors Introduction and Features Selection for Short-Term Load Forecasting

Weather information is an important factor in short-term load forecasting (STLF). However, for a long time, more importance has always been attached to forecasting models instead of other processes such as the introduction of weather factors or feature selection for STLF. The main aim of this paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Shuping, Liu, Lin, Sun, Huachen, Yan, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512701/
https://www.ncbi.nlm.nih.gov/pubmed/33265275
http://dx.doi.org/10.3390/e20030184
Descripción
Sumario:Weather information is an important factor in short-term load forecasting (STLF). However, for a long time, more importance has always been attached to forecasting models instead of other processes such as the introduction of weather factors or feature selection for STLF. The main aim of this paper is to develop a novel methodology based on Fisher information for meteorological variables introduction and variable selection in STLF. Fisher information computation for one-dimensional and multidimensional weather variables is first described, and then the introduction of meteorological factors and variables selection for STLF models are discussed in detail. On this basis, different forecasting models with the proposed methodology are established. The proposed methodology is implemented on real data obtained from Electric Power Utility of Zhenjiang, Jiangsu Province, in southeast China. The results show the advantages of the proposed methodology in comparison with other traditional ones regarding prediction accuracy, and it has very good practical significance. Therefore, it can be used as a unified method for introducing weather variables into STLF models, and selecting their features.