Cargando…
Game Theoretic Approach for Systematic Feature Selection; Application in False Alarm Detection in Intensive Care Units
Intensive Care Units (ICUs) are equipped with many sophisticated sensors and monitoring devices to provide the highest quality of care for critically ill patients. However, these devices might generate false alarms that reduce standard of care and result in desensitization of caregivers to alarms. T...
Autores principales: | Afghah, Fatemeh, Razi, Abolfazl, Soroushmehr, Reza, Ghanbari, Hamid, Najarian, Kayvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512707/ https://www.ncbi.nlm.nih.gov/pubmed/33265281 http://dx.doi.org/10.3390/e20030190 |
Ejemplares similares
-
Network-Based Enriched Gene Subnetwork Identification: A Game-Theoretic Approach
por: Razi, Abolfazl, et al.
Publicado: (2016) -
Transforming big data into computational models for personalized medicine and health care
por: Reza Soroushmehr, S. M., et al.
Publicado: (2016) -
Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
por: Mousavi, Sajad, et al.
Publicado: (2020) -
Alarms in the intensive care unit: how can the number of false alarms be reduced?
por: Chambrin, Marie-Christine
Publicado: (2001) -
Vessel segmentation for X-ray coronary angiography using ensemble methods with deep learning and filter-based features
por: Gao, Zijun, et al.
Publicado: (2022)