Cargando…
Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence
In this paper, we examine two widely-used approaches, the polynomial chaos expansion (PCE) and Gaussian process (GP) regression, for the development of surrogate models. The theoretical differences between the PCE and GP approximations are discussed. A state-of-the-art PCE approach is constructed ba...
Autores principales: | Yan, Liang, Duan, Xiaojun, Liu, Bowen, Xu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512709/ https://www.ncbi.nlm.nih.gov/pubmed/33265282 http://dx.doi.org/10.3390/e20030191 |
Ejemplares similares
-
Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
por: Jiang, Linzhi, et al.
Publicado: (2022) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Nielsen, Frank
Publicado: (2021) -
Analysis of the Stochastic Quarter-Five Spot Problem Using Polynomial Chaos
por: AbdelFattah, Hesham, et al.
Publicado: (2020) -
Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion
por: Zhao, Jianyu, et al.
Publicado: (2018) -
Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions
por: Paulson, Joel A., et al.
Publicado: (2019)