Cargando…

Estimating Multivariate Discrete Distributions Using Bernstein Copulas †

Measuring the dependence between random variables is one of the most fundamental problems in statistics, and therefore, determining the joint distribution of the relevant variables is crucial. Copulas have recently become an important tool for properly inferring the joint distribution of the variabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Fossaluza, Victor, Esteves, Luís Gustavo, Pereira, Carlos Alberto de Bragança
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512711/
https://www.ncbi.nlm.nih.gov/pubmed/33265285
http://dx.doi.org/10.3390/e20030194
_version_ 1783586220893274112
author Fossaluza, Victor
Esteves, Luís Gustavo
Pereira, Carlos Alberto de Bragança
author_facet Fossaluza, Victor
Esteves, Luís Gustavo
Pereira, Carlos Alberto de Bragança
author_sort Fossaluza, Victor
collection PubMed
description Measuring the dependence between random variables is one of the most fundamental problems in statistics, and therefore, determining the joint distribution of the relevant variables is crucial. Copulas have recently become an important tool for properly inferring the joint distribution of the variables of interest. Although many studies have addressed the case of continuous variables, few studies have focused on treating discrete variables. This paper presents a nonparametric approach to the estimation of joint discrete distributions with bounded support using copulas and Bernstein polynomials. We present an application in real obsessive-compulsive disorder data.
format Online
Article
Text
id pubmed-7512711
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75127112020-11-09 Estimating Multivariate Discrete Distributions Using Bernstein Copulas † Fossaluza, Victor Esteves, Luís Gustavo Pereira, Carlos Alberto de Bragança Entropy (Basel) Article Measuring the dependence between random variables is one of the most fundamental problems in statistics, and therefore, determining the joint distribution of the relevant variables is crucial. Copulas have recently become an important tool for properly inferring the joint distribution of the variables of interest. Although many studies have addressed the case of continuous variables, few studies have focused on treating discrete variables. This paper presents a nonparametric approach to the estimation of joint discrete distributions with bounded support using copulas and Bernstein polynomials. We present an application in real obsessive-compulsive disorder data. MDPI 2018-03-14 /pmc/articles/PMC7512711/ /pubmed/33265285 http://dx.doi.org/10.3390/e20030194 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fossaluza, Victor
Esteves, Luís Gustavo
Pereira, Carlos Alberto de Bragança
Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title_full Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title_fullStr Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title_full_unstemmed Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title_short Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
title_sort estimating multivariate discrete distributions using bernstein copulas †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512711/
https://www.ncbi.nlm.nih.gov/pubmed/33265285
http://dx.doi.org/10.3390/e20030194
work_keys_str_mv AT fossaluzavictor estimatingmultivariatediscretedistributionsusingbernsteincopulas
AT estevesluisgustavo estimatingmultivariatediscretedistributionsusingbernsteincopulas
AT pereiracarlosalbertodebraganca estimatingmultivariatediscretedistributionsusingbernsteincopulas