Cargando…
Modulation Signal Recognition Based on Information Entropy and Ensemble Learning
In this paper, information entropy and ensemble learning based signal recognition theory and algorithms have been proposed. We have extracted 16 kinds of entropy features out of 9 types of modulated signals. The types of information entropy used are numerous, including Rényi entropy and energy entro...
Autores principales: | Zhang, Zhen, Li, Yibing, Jin, Shanshan, Zhang, Zhaoyue, Wang, Hui, Qi, Lin, Zhou, Ruolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512713/ https://www.ncbi.nlm.nih.gov/pubmed/33265289 http://dx.doi.org/10.3390/e20030198 |
Ejemplares similares
-
Resultant Information Descriptors, Equilibrium States and Ensemble Entropy †
por: Nalewajski, Roman F.
Publicado: (2021) -
Gesture Recognition by Ensemble Extreme Learning Machine Based on Surface Electromyography Signals
por: Peng, Fulai, et al.
Publicado: (2022) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023) -
A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals
por: Zhu, Junyao, et al.
Publicado: (2022) -
Ensemble Learning with Stochastic Configuration Network for Noisy Optical Fiber Vibration Signal Recognition
por: Qu, Hongquan, et al.
Publicado: (2019)