Cargando…
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates†
The simulation of complex physics models may lead to enormous computer running times. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. If for a few input parameter settings an output data set has been acquired, one could be interest...
Autores principales: | Preuss, Roland, von Toussaint, Udo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512716/ https://www.ncbi.nlm.nih.gov/pubmed/33265292 http://dx.doi.org/10.3390/e20030201 |
Ejemplares similares
-
Outlier-Robust Surrogate Modeling of Ion–Solid Interaction Simulations †
por: Preuss, Roland, et al.
Publicado: (2023) -
Bayesian Determination of Parameters for Plasma-Wall Interactions
por: Preuss, Roland, et al.
Publicado: (2019) -
Surrogates: Gaussian process modeling, design, and optimization for the applied sciences
por: Gramacy, Robert B
Publicado: (2020) -
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
por: Xu, Zhihang, et al.
Publicado: (2020) -
Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
por: Kopsiaftis, George, et al.
Publicado: (2019)