Cargando…
Computational Information Geometry for Binary Classification of High-Dimensional Random Tensors †
Evaluating the performance of Bayesian classification in a high-dimensional random tensor is a fundamental problem, usually difficult and under-studied. In this work, we consider two Signal to Noise Ratio (SNR)-based binary classification problems of interest. Under the alternative hypothesis, i.e.,...
Autores principales: | Pham, Gia-Thuy, Boyer, Rémy, Nielsen, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512719/ https://www.ncbi.nlm.nih.gov/pubmed/33265294 http://dx.doi.org/10.3390/e20030203 |
Ejemplares similares
-
Computational information geometry: for image and signal processing
por: Nielsen, Frank, et al.
Publicado: (2017) -
Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification
por: Furmańczyk, Konrad, et al.
Publicado: (2020) -
Geometry of quantum computations
por: Giorgadze, Gia
Publicado: (2013) -
Tensor geometry : the geometric viewpoint and its uses /
por: Dodson, C. T. J.
Publicado: (1991) -
Matrix Information Geometry
por: Nielsen, Frank, et al.
Publicado: (2013)