Cargando…
Deconstructing Cross-Entropy for Probabilistic Binary Classifiers
In this work, we analyze the cross-entropy function, widely used in classifiers both as a performance measure and as an optimization objective. We contextualize cross-entropy in the light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we thoroughly analyze...
Autores principales: | Ramos, Daniel, Franco-Pedroso, Javier, Lozano-Diez, Alicia, Gonzalez-Rodriguez, Joaquin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512723/ https://www.ncbi.nlm.nih.gov/pubmed/33265299 http://dx.doi.org/10.3390/e20030208 |
Ejemplares similares
-
The Fermi–Dirac distribution provides a calibrated probabilistic output for binary classifiers
por: Kim, Sung-Cheol, et al.
Publicado: (2021) -
Genome-enabled prediction using probabilistic neural network classifiers
por: González-Camacho, Juan Manuel, et al.
Publicado: (2016) -
Gaussian Mixture Models of Between-Source Variation for Likelihood Ratio Computation from Multivariate Data
por: Franco-Pedroso, Javier, et al.
Publicado: (2016) -
Stable reliability diagrams for probabilistic classifiers
por: Dimitriadis, Timo, et al.
Publicado: (2021) -
Classifier uncertainty: evidence, potential impact, and probabilistic treatment
por: Tötsch, Niklas, et al.
Publicado: (2021)