Cargando…
A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
A feature extraction method named improved multi-scale entropy (IMSE) is proposed for rolling bearing fault diagnosis. This method could overcome information leakage in calculating the similarity of machinery systems, which is based on Pythagorean Theorem and similarity criterion. Features extracted...
Autores principales: | Ju, Bin, Zhang, Haijiao, Liu, Yongbin, Liu, Fang, Lu, Siliang, Dai, Zhijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512727/ https://www.ncbi.nlm.nih.gov/pubmed/33265303 http://dx.doi.org/10.3390/e20040212 |
Ejemplares similares
-
Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing
por: Ying, Wanming, et al.
Publicado: (2022) -
Fault Recognition of Rolling Bearings Based on Parameter Optimized Multi-Scale Permutation Entropy and Gath-Geva
por: Wang, Haiming, et al.
Publicado: (2021) -
Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings
por: Li, Zhe, et al.
Publicado: (2022) -
Time-Shift Multi-scale Weighted Permutation Entropy and GWO-SVM Based Fault Diagnosis Approach for Rolling Bearing
por: Dong, Zhilin, et al.
Publicado: (2019) -
A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
por: Ge, Jianghua, et al.
Publicado: (2020)