Cargando…
Generalized Pesin-Like Identity and Scaling Relations at the Chaos Threshold of the Rössler System
In this paper, using the Poincaré section of the flow we numerically verify a generalization of a Pesin-like identity at the chaos threshold of the Rössler system, which is one of the most popular three-dimensional continuous systems. As Poincaré section points of the flow show similar behavior to t...
Autores principales: | Cetin, Kivanc, Afsar, Ozgur, Tirnakli, Ugur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512731/ https://www.ncbi.nlm.nih.gov/pubmed/33265307 http://dx.doi.org/10.3390/e20040216 |
Ejemplares similares
-
Schweizer Präsident Couchepin will Chaos-Forscher Rössler treffen
Publicado: (2008) -
Schweizer Präsident Couchepin will Chaos-Forscher Rössler treffen
Publicado: (2008) -
Couchepin will Chaos-Forscher Rössler treffen002835449 245 L
Publicado: (2008) -
A generalization of the standard map and its statistical characterization
por: Cetin, Kivanc, et al.
Publicado: (2022) -
Necessary Condition of Self-Organisation in Nonextensive Open Systems
por: Afsar, Ozgur, et al.
Publicado: (2023)