Cargando…

Logarithmic Sobolev Inequality and Exponential Convergence of a Markovian Semigroup in the Zygmund Space

We investigate the exponential convergence of a Markovian semigroup in the Zygmund space under the assumption of logarithmic Sobolev inequality. We show that the convergence rate is greater than the logarithmic Sobolev constant. To do this, we use the notion of entropy. We also give an example of a...

Descripción completa

Detalles Bibliográficos
Autor principal: Shigekawa, Ichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512736/
https://www.ncbi.nlm.nih.gov/pubmed/33265311
http://dx.doi.org/10.3390/e20040220
Descripción
Sumario:We investigate the exponential convergence of a Markovian semigroup in the Zygmund space under the assumption of logarithmic Sobolev inequality. We show that the convergence rate is greater than the logarithmic Sobolev constant. To do this, we use the notion of entropy. We also give an example of a Laguerre operator. We determine the spectrum in the Orlicz space and discuss the relation between the logarithmic Sobolev constant and the spectral gap.