Cargando…
An Approach for the Generation of an Nth-Order Chaotic System with Hyperbolic Sine
Chaotic systems with hyperbolic sine nonlinearity have attracted the attention of researchers in the last two years. This paper introduces a new approach for generating a class of simple chaotic systems with hyperbolic sine. With nth-order ordinary differential equations (ODEs), any desirable order...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512745/ https://www.ncbi.nlm.nih.gov/pubmed/33265321 http://dx.doi.org/10.3390/e20040230 |
Sumario: | Chaotic systems with hyperbolic sine nonlinearity have attracted the attention of researchers in the last two years. This paper introduces a new approach for generating a class of simple chaotic systems with hyperbolic sine. With nth-order ordinary differential equations (ODEs), any desirable order of chaotic systems with hyperbolic sine nonlinearity can be easily constructed. Fourth-order, fifth-order, and tenth-order chaotic systems are taken as examples to verify the theory. To achieve simplicity of the electrical circuit, two back-to-back diodes represent hyperbolic sine nonlinearity without any multiplier or subcircuits. Thus, these systems can achieve both physical simplicity and analytic complexity at the same time. |
---|