Cargando…
An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments †
Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users s...
Autores principales: | Li, Xiaohong, Cao, Ru, Hao, Jianye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512751/ https://www.ncbi.nlm.nih.gov/pubmed/33265327 http://dx.doi.org/10.3390/e20040236 |
Ejemplares similares
-
Machine Learning for Smart Environments in B5G Networks: Connectivity and QoS
por: Alsamhi, Saeed H., et al.
Publicado: (2021) -
An Adaptive Information Security System for 5G-Enabled Smart Grid Based on Artificial Neural Network and Case-Based Learning Algorithms
por: Jiang, Chengzhi, et al.
Publicado: (2022) -
A Game Model for Analyzing Wireless Sensor Networks of 5G Environment Based on Adaptive Equilibrium Optimizer Algorithm
por: Zheng, Weimin, et al.
Publicado: (2023) -
An Anomaly Detection Algorithm Based on Ensemble Learning for 5G Environment
por: Lei, Lifeng, et al.
Publicado: (2022) -
Beam-Selection for 5G/B5G Networks Using Machine Learning: A Comparative Study
por: Chatzoglou, Efstratios, et al.
Publicado: (2023)