Cargando…
Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition
The accuracy of underwater acoustic targets recognition via limited ship radiated noise can be improved by a deep neural network trained with a large number of unlabeled samples. However, redundant features learned by deep neural network have negative effects on recognition accuracy and efficiency....
Autores principales: | Shen, Sheng, Yang, Honghui, Sheng, Meiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512758/ https://www.ncbi.nlm.nih.gov/pubmed/33265334 http://dx.doi.org/10.3390/e20040243 |
Ejemplares similares
-
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Automatic Modulation Classification for Underwater Acoustic Communication Signals Based on Deep Complex Networks
por: Yao, Xiaohui, et al.
Publicado: (2023) -
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2019) -
Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
por: Yao, Xiaohui, et al.
Publicado: (2023) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021)