Cargando…
Multiple Sclerosis Identification Based on Fractional Fourier Entropy and a Modified Jaya Algorithm
Aim: Currently, identifying multiple sclerosis (MS) by human experts may come across the problem of “normal-appearing white matter”, which causes a low sensitivity. Methods: In this study, we presented a computer vision based approached to identify MS in an automatic way. This proposed method first...
Autores principales: | Wang, Shui-Hua, Cheng, Hong, Phillips, Preetha, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512770/ https://www.ncbi.nlm.nih.gov/pubmed/33265345 http://dx.doi.org/10.3390/e20040254 |
Ejemplares similares
-
Optimization of Selective Laser Melting Parameter for Invar Material by Using JAYA Algorithm: Comparison with TLBO, GA and JAYA
por: Gajera, Hiren, et al.
Publicado: (2022) -
An Intensive and Comprehensive Overview of JAYA Algorithm, its Versions and Applications
por: Zitar, Raed Abu, et al.
Publicado: (2021) -
Graph drawing using Jaya
por: Dib, Fadi K., et al.
Publicado: (2023) -
Taenia solium Cysticercosis, Irian Jaya, Indonesia
por: Wandra, Toni, et al.
Publicado: (2003) -
Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling
por: Wang, Shui-Hua, et al.
Publicado: (2018)