Cargando…
Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data
A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512772/ https://www.ncbi.nlm.nih.gov/pubmed/33265348 http://dx.doi.org/10.3390/e20040257 |
_version_ | 1783586235137130496 |
---|---|
author | Kartun-Giles, Alexander P. Krioukov, Dmitri Gleeson, James P. Moreno, Yamir Bianconi, Ginestra |
author_facet | Kartun-Giles, Alexander P. Krioukov, Dmitri Gleeson, James P. Moreno, Yamir Bianconi, Ginestra |
author_sort | Kartun-Giles, Alexander P. |
collection | PubMed |
description | A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing) and equilibrium (static) sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree) with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling. |
format | Online Article Text |
id | pubmed-7512772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75127722020-11-09 Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data Kartun-Giles, Alexander P. Krioukov, Dmitri Gleeson, James P. Moreno, Yamir Bianconi, Ginestra Entropy (Basel) Article A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing) and equilibrium (static) sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree) with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling. MDPI 2018-04-07 /pmc/articles/PMC7512772/ /pubmed/33265348 http://dx.doi.org/10.3390/e20040257 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kartun-Giles, Alexander P. Krioukov, Dmitri Gleeson, James P. Moreno, Yamir Bianconi, Ginestra Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title | Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title_full | Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title_fullStr | Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title_full_unstemmed | Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title_short | Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data |
title_sort | sparse power-law network model for reliable statistical predictions based on sampled data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512772/ https://www.ncbi.nlm.nih.gov/pubmed/33265348 http://dx.doi.org/10.3390/e20040257 |
work_keys_str_mv | AT kartungilesalexanderp sparsepowerlawnetworkmodelforreliablestatisticalpredictionsbasedonsampleddata AT krioukovdmitri sparsepowerlawnetworkmodelforreliablestatisticalpredictionsbasedonsampleddata AT gleesonjamesp sparsepowerlawnetworkmodelforreliablestatisticalpredictionsbasedonsampleddata AT morenoyamir sparsepowerlawnetworkmodelforreliablestatisticalpredictionsbasedonsampleddata AT bianconiginestra sparsepowerlawnetworkmodelforreliablestatisticalpredictionsbasedonsampleddata |