Cargando…
R-Norm Entropy and R-Norm Divergence in Fuzzy Probability Spaces
In the presented article, we define the R-norm entropy and the conditional R-norm entropy of partitions of a given fuzzy probability space and study the properties of the suggested entropy measures. In addition, we introduce the concept of R-norm divergence of fuzzy P-measures and we derive fundamen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512788/ https://www.ncbi.nlm.nih.gov/pubmed/33265363 http://dx.doi.org/10.3390/e20040272 |
Sumario: | In the presented article, we define the R-norm entropy and the conditional R-norm entropy of partitions of a given fuzzy probability space and study the properties of the suggested entropy measures. In addition, we introduce the concept of R-norm divergence of fuzzy P-measures and we derive fundamental properties of this quantity. Specifically, it is shown that the Shannon entropy and the conditional Shannon entropy of fuzzy partitions can be derived from the R-norm entropy and conditional R-norm entropy of fuzzy partitions, respectively, as the limiting cases for R going to 1; the Kullback–Leibler divergence of fuzzy P-measures may be inferred from the R-norm divergence of fuzzy P-measures as the limiting case for R going to 1. We also provide numerical examples that illustrate the results. |
---|