Cargando…
KL Divergence-Based Fuzzy Cluster Ensemble for Image Segmentation
Ensemble clustering combines different basic partitions of a dataset into a more stable and robust one. Thus, cluster ensemble plays a significant role in applications like image segmentation. However, existing ensemble methods have a few demerits, including the lack of diversity of basic partitions...
Autores principales: | Wei, Huiqin, Chen, Long, Guo, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512790/ https://www.ncbi.nlm.nih.gov/pubmed/33265364 http://dx.doi.org/10.3390/e20040273 |
Ejemplares similares
-
Molecular Image Segmentation Based on Improved Fuzzy Clustering
por: Yu, Jinhua, et al.
Publicado: (2007) -
Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network
por: Chen, Zhijia, et al.
Publicado: (2015) -
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015) -
Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm
por: Huang, Jinjie, et al.
Publicado: (2020) -
A New Multistage Medical Segmentation Method Based on Superpixel and Fuzzy Clustering
por: Ji, Shiyong, et al.
Publicado: (2014)