Cargando…
Polynomial-Time Algorithm for Learning Optimal BFS-Consistent Dynamic Bayesian Networks
Dynamic Bayesian networks (DBN) are powerful probabilistic representations that model stochastic processes. They consist of a prior network, representing the distribution over the initial variables, and a set of transition networks, representing the transition distribution between variables over tim...
Autores principales: | Sousa, Margarida, Carvalho, Alexandra M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512791/ https://www.ncbi.nlm.nih.gov/pubmed/33265365 http://dx.doi.org/10.3390/e20040274 |
Ejemplares similares
-
Transcultural Adaptation and Validation of the Spanish Bristol Foot Score (BFS-S)
por: Navarro-Flores, Emmanuel, et al.
Publicado: (2018) -
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water
por: Stitt, C. A., et al.
Publicado: (2018) -
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour
por: Stitt, C. A., et al.
Publicado: (2017) -
Bayesian splines versus fractional polynomials in network meta-analysis
por: Heinecke, Andreas, et al.
Publicado: (2020) -
Polynomial Time Algorithms for Tracking Path Problems
por: Choudhary, Pratibha
Publicado: (2020)