Cargando…
TRSWA-BP Neural Network for Dynamic Wind Power Forecasting Based on Entropy Evaluation
The performance evaluation of wind power forecasting under commercially operating circumstances is critical to a wide range of decision-making situations, yet difficult because of its stochastic nature. This paper firstly introduces a novel TRSWA-BP neural network, of which learning process is based...
Autores principales: | Wang, Shuangxin, Zhao, Xin, Li, Meng, Wang, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512800/ https://www.ncbi.nlm.nih.gov/pubmed/33265374 http://dx.doi.org/10.3390/e20040283 |
Ejemplares similares
-
Comparison of Recurrent Neural Networks for Wind Power Forecasting
por: López, Erick, et al.
Publicado: (2020) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014) -
PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades
por: Liu, Xin, et al.
Publicado: (2019) -
Sales Forecast of Marketing Brand Based on BP Neural Network Model
por: Feng, Wei
Publicado: (2022) -
Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition
por: Tang, Jingwei, et al.
Publicado: (2022)