Cargando…

The Conservation of Average Entropy Production Rate in a Model of Signal Transduction: Information Thermodynamics Based on the Fluctuation Theorem

Cell signal transduction is a non-equilibrium process characterized by the reaction cascade. This study aims to quantify and compare signal transduction cascades using a model of signal transduction. The signal duration was found to be linked to step-by-step transition probability, which was determi...

Descripción completa

Detalles Bibliográficos
Autor principal: Tsuruyama, Tatsuaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512822/
https://www.ncbi.nlm.nih.gov/pubmed/33265394
http://dx.doi.org/10.3390/e20040303
Descripción
Sumario:Cell signal transduction is a non-equilibrium process characterized by the reaction cascade. This study aims to quantify and compare signal transduction cascades using a model of signal transduction. The signal duration was found to be linked to step-by-step transition probability, which was determined using information theory. By applying the fluctuation theorem for reversible signal steps, the transition probability was described using the average entropy production rate. Specifically, when the signal event number during the cascade was maximized, the average entropy production rate was found to be conserved during the entire cascade. This approach provides a quantitative means of analyzing signal transduction and identifies an effective cascade for a signaling network.