Cargando…

Quantization and Bifurcation beyond Square-Integrable Wavefunctions

Probability interpretation is the cornerstone of standard quantum mechanics. To ensure the validity of the probability interpretation, wavefunctions have to satisfy the square-integrable (SI) condition, which gives rise to the well-known phenomenon of energy quantization in confined quantum systems....

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ciann-Dong, Kuo, Chung-Hsuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512846/
https://www.ncbi.nlm.nih.gov/pubmed/33265417
http://dx.doi.org/10.3390/e20050327
Descripción
Sumario:Probability interpretation is the cornerstone of standard quantum mechanics. To ensure the validity of the probability interpretation, wavefunctions have to satisfy the square-integrable (SI) condition, which gives rise to the well-known phenomenon of energy quantization in confined quantum systems. On the other hand, nonsquare-integrable (NSI) solutions to the Schrödinger equation are usually ruled out and have long been believed to be irrelevant to energy quantization. This paper proposes a quantum-trajectory approach to energy quantization by releasing the SI condition and considering both SI and NSI solutions to the Schrödinger equation. Contrary to our common belief, we find that both SI and NSI wavefunctions contribute to energy quantization. SI wavefunctions help to locate the bifurcation points at which energy has a step jump, while NSI wavefunctions form the flat parts of the stair-like distribution of the quantized energies. The consideration of NSI wavefunctions furthermore reveals a new quantum phenomenon regarding the synchronicity between the energy quantization process and the center-saddle bifurcation process.