Cargando…

Minimum Penalized ϕ-Divergence Estimation under Model Misspecification

This paper focuses on the consequences of assuming a wrong model for multinomial data when using minimum penalized [Formula: see text]-divergence, also known as minimum penalized disparity estimators, to estimate the model parameters. These estimators are shown to converge to a well-defined limit. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Alba-Fernández, M. Virtudes, Jiménez-Gamero, M. Dolores, Ariza-López, F. Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512848/
https://www.ncbi.nlm.nih.gov/pubmed/33265419
http://dx.doi.org/10.3390/e20050329
Descripción
Sumario:This paper focuses on the consequences of assuming a wrong model for multinomial data when using minimum penalized [Formula: see text]-divergence, also known as minimum penalized disparity estimators, to estimate the model parameters. These estimators are shown to converge to a well-defined limit. An application of the results obtained shows that a parametric bootstrap consistently estimates the null distribution of a certain class of test statistics for model misspecification detection. An illustrative application to the accuracy assessment of the thematic quality in a global land cover map is included.