Cargando…

Minimum Penalized ϕ-Divergence Estimation under Model Misspecification

This paper focuses on the consequences of assuming a wrong model for multinomial data when using minimum penalized [Formula: see text]-divergence, also known as minimum penalized disparity estimators, to estimate the model parameters. These estimators are shown to converge to a well-defined limit. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Alba-Fernández, M. Virtudes, Jiménez-Gamero, M. Dolores, Ariza-López, F. Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512848/
https://www.ncbi.nlm.nih.gov/pubmed/33265419
http://dx.doi.org/10.3390/e20050329
_version_ 1783586251786420224
author Alba-Fernández, M. Virtudes
Jiménez-Gamero, M. Dolores
Ariza-López, F. Javier
author_facet Alba-Fernández, M. Virtudes
Jiménez-Gamero, M. Dolores
Ariza-López, F. Javier
author_sort Alba-Fernández, M. Virtudes
collection PubMed
description This paper focuses on the consequences of assuming a wrong model for multinomial data when using minimum penalized [Formula: see text]-divergence, also known as minimum penalized disparity estimators, to estimate the model parameters. These estimators are shown to converge to a well-defined limit. An application of the results obtained shows that a parametric bootstrap consistently estimates the null distribution of a certain class of test statistics for model misspecification detection. An illustrative application to the accuracy assessment of the thematic quality in a global land cover map is included.
format Online
Article
Text
id pubmed-7512848
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75128482020-11-09 Minimum Penalized ϕ-Divergence Estimation under Model Misspecification Alba-Fernández, M. Virtudes Jiménez-Gamero, M. Dolores Ariza-López, F. Javier Entropy (Basel) Article This paper focuses on the consequences of assuming a wrong model for multinomial data when using minimum penalized [Formula: see text]-divergence, also known as minimum penalized disparity estimators, to estimate the model parameters. These estimators are shown to converge to a well-defined limit. An application of the results obtained shows that a parametric bootstrap consistently estimates the null distribution of a certain class of test statistics for model misspecification detection. An illustrative application to the accuracy assessment of the thematic quality in a global land cover map is included. MDPI 2018-04-30 /pmc/articles/PMC7512848/ /pubmed/33265419 http://dx.doi.org/10.3390/e20050329 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alba-Fernández, M. Virtudes
Jiménez-Gamero, M. Dolores
Ariza-López, F. Javier
Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title_full Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title_fullStr Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title_full_unstemmed Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title_short Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
title_sort minimum penalized ϕ-divergence estimation under model misspecification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512848/
https://www.ncbi.nlm.nih.gov/pubmed/33265419
http://dx.doi.org/10.3390/e20050329
work_keys_str_mv AT albafernandezmvirtudes minimumpenalizedphdivergenceestimationundermodelmisspecification
AT jimenezgameromdolores minimumpenalizedphdivergenceestimationundermodelmisspecification
AT arizalopezfjavier minimumpenalizedphdivergenceestimationundermodelmisspecification