Cargando…
Time-Fractional Diffusion with Mass Absorption in a Half-Line Domain due to Boundary Value of Concentration Varying Harmonically in Time
The time-fractional diffusion equation with mass absorption is studied in a half-line domain under the Dirichlet boundary condition varying harmonically in time. The Caputo derivative is employed. The solution is obtained using the Laplace transform with respect to time and the sin-Fourier transform...
Autores principales: | Povstenko, Yuriy, Kyrylych, Tamara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512865/ https://www.ncbi.nlm.nih.gov/pubmed/33265436 http://dx.doi.org/10.3390/e20050346 |
Ejemplares similares
-
Axisymmetric Fractional Diffusion with Mass Absorption in a Circle under Time-Harmonic Impact
por: Povstenko, Yuriy, et al.
Publicado: (2022) -
Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method
por: Kyrylych, Tamara, et al.
Publicado: (2023) -
An External Circular Crack in an Infinite Solid under Axisymmetric Heat Flux Loading in the Framework of Fractional Thermoelasticity
por: Povstenko, Yuriy, et al.
Publicado: (2021) -
Linear fractional diffusion-wave equation for scientists and engineers
por: Povstenko, Yuriy
Publicado: (2015) -
Time-varying boundaries for diffusion models of decision making and response time
por: Zhang, Shunan, et al.
Publicado: (2014)