Cargando…

A No-Go Theorem for Observer-Independent Facts

In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner’s friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignment...

Descripción completa

Detalles Bibliográficos
Autor principal: Brukner, Časlav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512869/
https://www.ncbi.nlm.nih.gov/pubmed/33265440
http://dx.doi.org/10.3390/e20050350
_version_ 1783586256691658752
author Brukner, Časlav
author_facet Brukner, Časlav
author_sort Brukner, Časlav
collection PubMed
description In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner’s friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignments by performing an appropriate measurement. As manifested through a click in a detector or a specific position of the pointer, the outcomes of these measurements can be regarded as reflecting directly observable “facts”. Reviewing arXiv:1507.05255, I will derive a no-go theorem for observer-independent facts, which would be common both for Wigner and the friend. I will then analyze this result in the context of a newly-derived theorem arXiv:1604.07422, where Frauchiger and Renner prove that “single-world interpretations of quantum theory cannot be self-consistent”. It is argued that “self-consistency” has the same implications as the assumption that observational statements of different observers can be compared in a single (and hence an observer-independent) theoretical framework. The latter, however, may not be possible, if the statements are to be understood as relational in the sense that their determinacy is relative to an observer.
format Online
Article
Text
id pubmed-7512869
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75128692020-11-09 A No-Go Theorem for Observer-Independent Facts Brukner, Časlav Entropy (Basel) Article In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner’s friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignments by performing an appropriate measurement. As manifested through a click in a detector or a specific position of the pointer, the outcomes of these measurements can be regarded as reflecting directly observable “facts”. Reviewing arXiv:1507.05255, I will derive a no-go theorem for observer-independent facts, which would be common both for Wigner and the friend. I will then analyze this result in the context of a newly-derived theorem arXiv:1604.07422, where Frauchiger and Renner prove that “single-world interpretations of quantum theory cannot be self-consistent”. It is argued that “self-consistency” has the same implications as the assumption that observational statements of different observers can be compared in a single (and hence an observer-independent) theoretical framework. The latter, however, may not be possible, if the statements are to be understood as relational in the sense that their determinacy is relative to an observer. MDPI 2018-05-08 /pmc/articles/PMC7512869/ /pubmed/33265440 http://dx.doi.org/10.3390/e20050350 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brukner, Časlav
A No-Go Theorem for Observer-Independent Facts
title A No-Go Theorem for Observer-Independent Facts
title_full A No-Go Theorem for Observer-Independent Facts
title_fullStr A No-Go Theorem for Observer-Independent Facts
title_full_unstemmed A No-Go Theorem for Observer-Independent Facts
title_short A No-Go Theorem for Observer-Independent Facts
title_sort no-go theorem for observer-independent facts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512869/
https://www.ncbi.nlm.nih.gov/pubmed/33265440
http://dx.doi.org/10.3390/e20050350
work_keys_str_mv AT bruknercaslav anogotheoremforobserverindependentfacts
AT bruknercaslav nogotheoremforobserverindependentfacts