Cargando…
Entropic Uncertainty Relations for Successive Measurements in the Presence of a Minimal Length
We address the generalized uncertainty principle in scenarios of successive measurements. Uncertainties are characterized by means of generalized entropies of both the Rényi and Tsallis types. Here, specific features of measurements of observables with continuous spectra should be taken into account...
Autor principal: | Rastegin, Alexey E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512872/ https://www.ncbi.nlm.nih.gov/pubmed/33265444 http://dx.doi.org/10.3390/e20050354 |
Ejemplares similares
-
Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory
por: Zhang, Jun, et al.
Publicado: (2015) -
Experimental test of fine-grained entropic uncertainty relation in the presence of quantum memory
por: Lv, Wei-Min, et al.
Publicado: (2019) -
Unsharpness of generalized measurement and its effects in entropic uncertainty relations
por: Baek, Kyunghyun, et al.
Publicado: (2016) -
Entropic Uncertainty Relations via Direct-Sum Majorization Relation for Generalized Measurements
por: Baek, Kyunghyun, et al.
Publicado: (2019) -
Tripartite entropic uncertainty relation under phase decoherence
por: Abdelghany, R. A., et al.
Publicado: (2021)